Regiodefined Apparent Hydroallylation toward α , β -Unsaturated Carbonyl Compounds Attained by the Rhodium-Catalyzed One-Pot Procedure

Takako Muraoka, Isamu Matsuda,* and Kenji Itoh

Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa, Nagoya 464-8603, Japan

Received March 27, 2000

Carbon-carbon bond formation catalyzed by a transition-metal complex is one of the fastest growing fields in synthetic organic chemistry.¹ In particular, it is fascinating that several bonds are formed in an orderly manner in a one-pot reaction of more than three starting substrates under almost neutral conditions.² We have found that certain types of rhodium complexes enable multicomponent couplings including a hydrosilane as a starting component.³ We attempted to design a new type of the rhodium-catalyzed reaction which provides a facile route constructing homoallyl carbonyl compounds 1 (Scheme 1). We report herein the rhodium-catalyzed formal hydroallylation toward α , β -unsaturated carbonyl compounds, which produces 1 in a one-pot reaction of a hydrosilane, an α , β -unsaturated carbonyl compound, and an allylic carbonate.

Scheme 1

A formal hydroallylation toward an activated alkene was accomplished by the catalysis of a Rh(I) complex. Methyl methacrylate (**2a**) interacted with diethylmethylsilane (**3a**) and 3-methoxycarbonyloxy-1-phenyl-1-butene (**4a**) to form a mixture of **6aa** and **7aa** in a CH₂Cl₂ solution containing these substrates and 1 mol % of [Rh(COD)(PR₃)₂]OTf (**5**, COD = 1,5-cyclooctadiene). As shown in Table 1 (entry 2), [Rh(COD)(PMePh₂)₂]-OTf (**5b**) gave an acceptable result though long reaction time was needed for complete consumption of **4a**. It should be noted that these substrates do not interact in the absence of **5** and that either **2a** or **4a** is susceptible to **3a** in the presence of **5**. The corresponding complexes bearing BF₄⁻ or PF₆⁻ as an anionic part did not give any product under similar conditions.

The rate of this hydroallylation was outstandingly accelerated by tuning the conditions, the use of **5d** as a catalyst, and the slow

(2) For recent reviews see: Wender, P. A., Ed. Chem. Rev. 1996, 1-600.
(3) (a) Muraoka, T.; Asaji, H.; Yamamoto, Y.; Matsuda, I.; Itoh, K. Chem.
Commun. 2000, 199. (b) Matsuda, I.; Fukuta, Y.; Itoh, K. Inorg. Chim. Acta
1999, 296, 72. (c) Matsuda, I.; Niikawa, N.; Kuwabara, R.; Inoue, H.;
Nagashima, H.; Itoh, K. J. Organomet. Chem. 1999, 574, 133. (d) Fukuta,
Y.; Matsuda, I.; Itoh, K. Tetrahedron Lett. 1999, 40, 4703. (e) Matsuda, I.;
Takeuchi, K.; Itoh, K. Tetrahedron Lett. 1999, 40, 4703. (e) Matsuda, I.;
Takeuchi, K.; Itoh, K. Tetrahedron Lett. 1999, 40, 4703. (e) Matsuda, I.;
Matsuda, I.; Itoh, K. Tetrahedron Lett. 1999, 40, 4703. (e) Matsuda, I.;
Takeuchi, K.; Itoh, K. Tetrahedron Lett. 1999, 40, 4703. (e) Matsuda, I.;
Taksuda, I.; Itoh, K. Tetrahedron Lett. 1999, 40, 2553. (f) Muraoka, T.;
Matsuda, I.; Itoh, K. Tetrahedron Lett. 1998, 39, 7325. (g) Matsuda, I.;
Fukuta, Y.; Tsuchihashi, T.; Nagashima, H.; Itoh, K. Organometallics 1997, 16, 4327.
(h) Ojima, I.; Vidal, E.; Tzamarioudaki, M.; Matsuda, I. J. Am. Chem. Soc. 1995, 117, 4419. (i) Monteil, F.; Matsuda, I.; Alper, H. J. Am. Chem. Soc. 1995, 117, 4419. (i) Matsuda, I.; Ishibashi, H.; Ii, N. Tetrahedron Lett. 1995, 36, 241. (k) Matsuda, I.; Sakakibara, J.; Inoue, H.; Nagashima, H. Tetrahedron Lett. 1992, 33, 5799. (l) Matsuda, I.; Sakakibara, J.; Nagashima, H. Tetrahedron Lett. 1991, 32, 7431. (m) Matsuda, I.; Takahashi, K.; Sato, S. Tetrahedron Lett. 1991, 32, 7431. (m) Matsuda, I.; Giso, A.; Sato, S. J. Am. Chem. Soc. 1990, 112, 6120. (o) Matsuda, I.; Ogiso, A.; Sato, S. J. Am. Chem. Soc. 1990, 112, 6320.

Table 1. Hydroanyradon or 2a with 3a and 4a Calaryzeu t	Table I.	Hydroall	vlation	of 2a	with 3	a and	4a	Catalyzed	by	- 2
--	----------	----------	---------	-------	--------	-------	----	-----------	----	-----

			products		
entry	[Rh] OTf	conditions	yield ^b (%)	ratio ^c (6:7)	
1	[Rh(COD)(DPPB)]OTf (5a) ^d	80 °C/19 h	55	41:59	
2	[Rh(COD)(PMePh ₂) ₂]OTf (5b)	25 °C/42 h	90	38:62	
3	$[Rh(COD)(PPh_3)_2]OTf(5c)$	25 °C/4 h	76	34:66	
4	$[Rh(COD){P(OPh)_3}_2]OTf(5d)$	25 °C/1 h	38^e	35:65	

^{*a*} A mixture of **2a** (2 equiv), **3a** (2 equiv), and **4a** was added to a solution of **5** (1 mol % for **4a**) in CH₂Cl₂ at 25 °C and the mixture was stirred for the conditions shown. ^{*b*} Isolated yield. ^{*c*} Determined by GLC analysis. ^{*d*} DPPB = 1,4-bis(diphenylphosphino)butane. ^{*e*} In addition to **6aa** and **7aa**, 1-phenyl-1-butene (**8a**) was isolated in 61% yield.

Table 2. Hydroallylation of 2 with 3a and 4a Catalyzed by 5d^a

				products			
		substrate		yiełd°	ratio ^d		
entry		2	time (h) ^o	(%)	(6:7)		
				6aa+7aa			
1			1	93	35:65		
2	2a		1	83°	32:68		
3		CO ₂ Me	1	83 ^r	35 : 65		
4	2 h		1	6ba	+7ba		
4	20	> CO2Me	,	99	33:67		
				6ca+7ca			
5	2c	✓ CO₂Me	1	96	51:49		
		0					
6	2d	\sim	2	oda	+7da		
				64	52:48		
		\sim		6ea	+7ea		
7	2e	0	1	96 ⁸	48:52		
		Q					
8	26	2 £		1	6fa	+7fa	
0	2.	$\langle \rangle$		99	48 : 52		
		0					
	Ĭ			609+709			
9	2g	í آ	12	90	46:54		
		\checkmark					

^{*a*} Unless otherwise noted, a solution of **4a** was added at the rate taking about 1 h to a mixture of **2** (2 equiv), **3a** (2 equiv), and **5d** (1 mol %) in CH₂Cl₂ at 25 °C. ^{*b*} The time for stirring. ^{*c*} Isolated yield. ^{*d*} Determined by GLC analysis. ^{*e*} Me₂PhSiH was used instead of **3a**. ^{*f*} EtMe₂SiH was used instead of **3a**. ^{*s*} A mixture of **2e** and **3a** was added to a solution of **4a** and **5d** in CH₂Cl₂.

addition of 4a into a reaction system (eq 1). The yields of 6aa

and **7aa** increased to 93% (entry 1 in Table 2) when a solution of **4a** in CH₂Cl₂ (4 mL) was slowly added to a CH₂Cl₂ solution of **2a**, **3a**, and **5d** (1 mol % for **4a**) at the rate taking 1 h for completion and then the resulting mixture was stirred for 1 h. In this operation, **8a** was not detected at all. The identical products **6aa** and **7aa** were also selectively obtained in the reactions using Me₂PhSiH (83%, entry 2 in Table 2) or EtMe₂SiH (83%, entry 3 in Table 2) instead of Et₂MeSiH under similar conditions.

This protocol for the hydroallylation of 2a is generally applicable to other types of α , β -unsaturated esters and ketones. These results are summarized in Table 2. α -Methylene- γ -

^{(1) (}a) McQuillin, F. J.; Parker, D. G.; Stephenson, G. R. *Transition Metal Organometallics for Organic Synthesis*; Cambridge University Press: Cambridge, 1991. (b) Hegedus, L. S., Volume Ed. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995; Vol. 12.

Table 3. Hydroallylation of 2a with 3a and 4 Catalyzed by 5d^a

^{*a*} Unless otherwise noted, a solution of **4** was added at the rate taking about 1 h to a mixture of **2a** (2 equiv), **3a** (2 equiv), and **5d** (1 mol %) in CH₂Cl₂ at 25 °C. ^{*b*} Isolated yield. ^{*c*} Determined by GLC analysis. ^{*d*} The time for stirring. ^{*e*} A mixture of **2a**, **3a**, and **4** in CH₂Cl₂ was refluxed for the given reaction time in the presence of **5d** (1 mol %). ^{*f*} **5c** was used in place of **5d** as a catalyst.

butyrolactone (2d) resulted in moderate yields of 6da and 7da (entry 6 in Table 2), whereas 2f and 2g gave the corresponding products in an excellent yield (entries 8 and 9 in Table 2).

Many types of allylic carbonate behaved as an allylating reagent as well as **4a**, though the reactivity of **4** significantly depends on the structure. The results are summarized in Table 3. Carbonates derived from primary alcohols (**4d** and **4e**) required forcing conditions to form **6** and **7** in acceptable yields (entries 3 and 4 in Table 3). Alicyclic carbonates showed high reactivity comparable to **4a** (entries 5-8 in Table 3). In the reaction of **4g**, less active **5c** was rather suitable than **5d** as a catalyst, since the formation of **6ag** became a minor path in the presence of **5d** despite the fast consumption of **4g** (entry 6 in Table 3). It is worth noting that 3-methyl-2-cyclopentene-1-ol (**4j**) reacted with **2a** and **3a** to give **6aj** in 57% yield as the sole product (entry 9 in Table 3).

The results hitherto described show clearly that the interaction between 2 and 3 on the rhodium metal must have priority over the one between 3 and 4 for accomplishing the selective coupling of these three substrates. It is well-established that the oxidative addition of hydrosilanes to transition metals is an important step in the hydrosilylation of unsaturated bonds.⁴ Thus, the following scheme (Scheme 2) can be proposed as a possible rationale for the present coupling in which 2a and 4a are presented as a typical example. H–[Rh]–SiR₃ species (9, where [Rh] = [Rh(PR¹₃)₂]⁺) are formed by the oxidative addition of hydrosilane (3) to the cationic rhodium complex (5) during the first stage. Insertion of an $\alpha_{,\beta}$ -unsaturated ester (2a) to the hydride–rhodium bond of 9 gives the rhodium–enolate species (10a).^{5,6} Subsequently, the interaction of allylic carbonate (4a) with 10a generates the η^3 -

Scheme 2

allyl rhodium enolate (**11aa**) with the concomitant formation of methyl trialkylsilyl carbonate. Ligand coupling resulting from **11aa** gives a mixture of products (**6aa** and **7aa**) and a low valent rhodium species (**12**) that interacts with **3** to regenerate **9**. Participation of η^3 -allyl complex **11** in Scheme 2 is consistent with the fact that a similar result (89% yield, **6aa:7aa** = 35:65) was obtained from the reaction of a regioisomer of **4a**, 1-methoxycarbonyloxy-1-phenyl-2-butene (**4a'**).

In all examples presented here, the α -carbon of 2 is exclusively allylated, whereas the distinction between the two allylic termini is relatively difficult during the reaction of linear carbonates (Table 2 and entries 3 and 4 in Table 3). In contrast, the regiochemistry of the alicyclic ones seems to be remarkably affected by the steric factor. The methoxycarbonyloxy group of 4h and 4i was replaced to form a C-C bond at the less substituted terminus of the corresponding allylic group with the high selectivity of 95% and 93%, respectively (entries 7 and 8 in Table 3). Diastereochemistry of the products is not controlled at this stage (entries 4-9 in Table 2). Although access to the similar frameworks is possible through classical methods such as allylation of enolate anions⁷ and allylation of enoxysilanes,⁸ there is no general and facile methodology to control the regiochemistry and/or the stereochemistry in the substitution at the allylic termini. Therefore, the present three-component coupling retains a sufficient usefulness not only in the novelty of the reaction, but also in synthetic organic chemistry despite these defects.

Acknowledgment. We thank CREST and the Ministry of Education, Science, Sports and Culture for the financial support.

Supporting Information Available: Experimental procedure for the formal hydroallylation of α , β -unsaturated carbonyl compounds and spectral and analytical data for all new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA001054B

^{(4) (}a) Hiyama, T.; Kusumoto, T. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 8, p 763. (b) Ojima, I. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: Chichester, U.K., 1989; p 1479 and references therein.

^{(5) (}a) Slough, G. A.; Hayashi, R.; Ashbaugh, J. R.; Shamblin, S. L.; Aukamp, A. M. Organometaliics **1994**, *13*, 890. (b) Slough, G. A.; Ashbaugh, J. R.; Zannoni, L. A. Organometaliics **1994**, *13*, 3587. (c) Sato, S.; Matsuda, I.; Izumi, Y. J. Organomet. Chem. **1988**, *352*, 223. (d) The example of η^1 oxygen-bound rhodium enolate; see: Slough, G. A.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. **1989**, *111*, 938.

⁽⁶⁾ A similar sequence is postulated in the reactions constructing aldoltype products from an α , β -enone, a hydrosilane, and an aldehyde.^{3m} Rhodium enolate complexes are formed by the interaction of a chlororhodium species with an enolate anion.^{5d}

^{(7) (}a) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. Engl. 2000, 39, 802. (b) Tsuji, J. Palladium Reagents and Catalysts; John Wiley & Sons: New York, 1995, and references therein.

^{(8) (}a) Malkov, A. V.; Baxendale, I. R.; Dvorák D.; Mansfield, D. J.; Kocovsky, P. J. Org. Chem. **1999**, 64, 2737. (b) Tsuji, J.; Takahashi, K.; Minami, I.; Shimizu, I. Tetrahedron Lett. **1984**, 25, 1325. (c) Reetz, M. T. Angew. Chem., Int. Ed. Engl. **1982**, 21, 96 and references therein.